Discriminative Sparse Representation for Expression Recognition
نویسندگان
چکیده
This thesis is focused on recognising emotions of different subjects through facial expressions in 2D images. We will go through the multiple stages of this problem where we aim to take maximum advantage of supervised algorithms and labelled information. We will compare different pixel processing techniques and show that the histogram based ones, like HOG and LBP, have the best performance for this particular problem. Sparse representation has definitely been proved to be a very good way to solve computer vision problems in facial understanding over the last couple of years. Therefore we will make use of a new label consistent singular value decomposition algorithm to learn a discriminative dictionary and compare its performance with several supervised dimensionality reduction techniques. Finally we will obtain state-of-the-art classification accuracies for the problem of recognising facial expressions with our histogram supervised manifold preserving sparse representation technique. We will test different methods across multiple databases containing images of various subjects performing various expressions, aligned or non-aligned.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملJoint and Discriminative Dictionary Learning for Facial Expression Recognition
Dictionary Learning and sparse coding methods have been widely used in computer vision with applications to face and object recognition. A common challenge when performing expression recognition is that face similarities may confound the expression recognition process. An approach to deal with this problem is to learn expression specific dictionaries, so that each atom corresponds to one expres...
متن کاملGene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning
Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn’t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The pro...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014